Structural Landmarking and Interaction Modelling: A "SLIM" Network for Graph Classification

Yaokang Zhu¹, Kai Zhang^{1*}, Jun Wang^{1*}, Haibin Ling², Jie Zhang³, Hongyuan Zha⁴

¹School of Computer Science and Technology, East China Normal University, Shanghai, China
²Stony Brook University, New York, USA

³ Institute of Brain-Inspired Intelligence, Fudan University, Shanghai, China
⁴ School of Data Science, Shenzhen Institute of Artificial Intelligence and Robotics for Society
The Chinese University of Hong Kong, Shenzhen, China

52184501026@stu.ecnu.edu.cn,{kzhang980, wongjun, haibin.ling, jzhang080}@gmail.com, zhahy@cuhk.edu.cn

AAAI 2022



Reported by Xinsheng Wang

- 1.Introduction
- 2.Method
- 3. Experiments

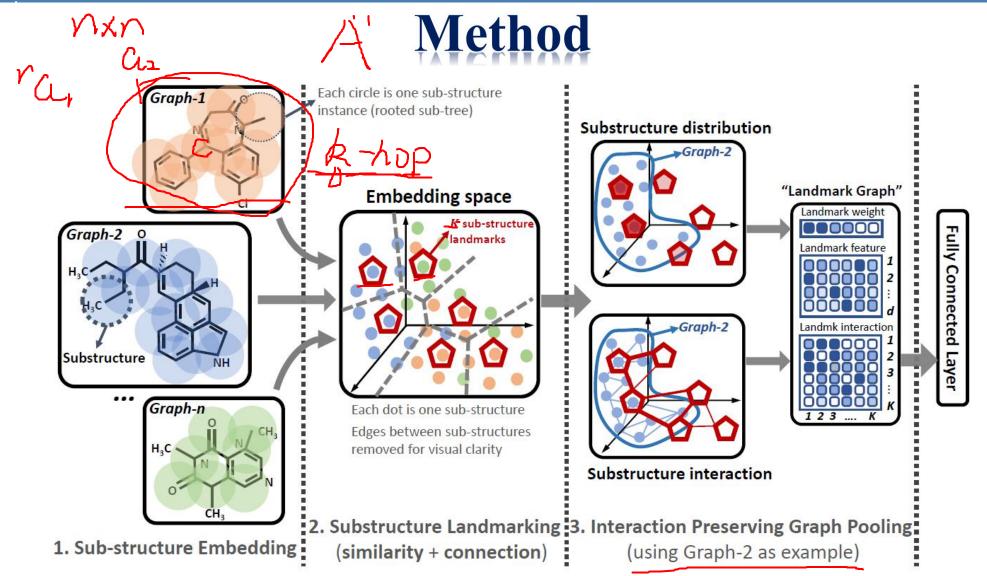
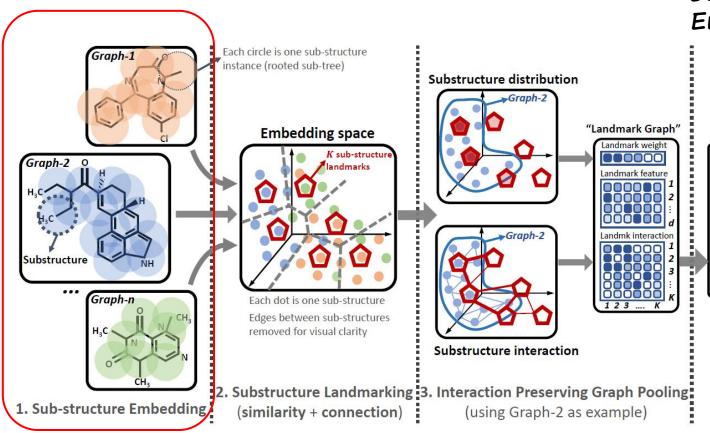


Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3) Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.



Sub-structure Identification and Embe $\mathbf{Z}_i = \mathbf{A}_i^{(k)}$

$$\mathbf{Z}_i = \mathbf{A}_i^{(k)} \mathbf{X}_i \tag{1}$$

$$\mathbf{A}_{i}^{(k)} = \mathbf{I} + \tilde{\mathbf{A}}_{i}^{(1)} + \tilde{\mathbf{A}}_{i}^{(2)} \dots + \tilde{\mathbf{A}}_{i}^{(k)}$$

$$\mathbf{Z}_{i} = \mathbf{I} \mathbf{X}_{i} \ \tilde{\mathbf{A}}_{i}^{(1)} \mathbf{X}_{i} \ \tilde{\mathbf{A}}_{i}^{(2)} \mathbf{X}_{i} \dots \tilde{\mathbf{A}}_{i}^{(k)} \mathbf{X}_{i}], \tag{2}$$

namely $\tilde{\mathbf{A}}^{(k)}(p,q) = 1$ if node p and q are exactly k-hops away in graph \mathcal{G}_i , and 0 otherwise.

$$f(\mathbf{Z}_i) = \sigma \left(\mathbf{Z}_i \cdot \mathbf{T} + \mathbf{B} \right), \tag{3}$$

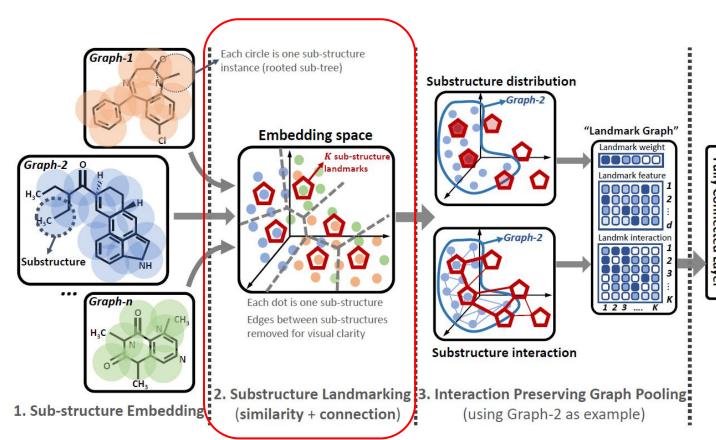
where T is transform matrix, B is bias matrix (a bias vector repeated n_i times row-wise) and $\sigma(\cdot)$ is the RELU function.

$$\mathbf{H}_i = f(\mathbf{Z}_i)$$

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \sum_{l \in \mathcal{N}_{j}^{i}} \log \left(\frac{\exp\langle \mathbf{H}_{i}(j,:), \mathbf{H}_{i}(l,:) \rangle}{\sum_{l'} \exp\langle \mathbf{H}_{i}(j,:), \mathbf{H}_{i}(l',:) \rangle} \right). \tag{4}$$
Here $\mathbf{H}_{i}(j,:)$ is the j^{th} row of \mathbf{H}_{i} , \langle , \rangle is inner product,

and \mathcal{N}_i^i are the neighbors of node i in graph \mathcal{G}_i

Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3) Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.



Sub-structure

Sub-structure

Let $U = \{\mu_1, \mu_2, ..., \mu_K\}$ be structural landmarks in the latent space of embedded sub-structures. To fully represent diverse sub-structures, each sub-graph instance should be faithfully approximated by the closest landmark. We use a soft assignment matrix $\mathbf{W}_i \in \mathbb{R}^{n_i \times k}$ for each graph \mathcal{G}_i , whose jk^{th} entry is the probability that the j^{th} sub-structure from \mathcal{G}_i belongs to the $k^{\bar{t}h}$ landmark μ_k . Inspired by the deep embedding clustering (Junyuan, Ross, and Ali 2016), W_i is parameterized by a Student's t-distribution

$$\mathbf{W}_{i}(j,k) = \frac{(1 + \|\mathbf{H}_{i}(j,:) - \boldsymbol{\mu}_{k}\|^{2}/\alpha)^{-\frac{\alpha+1}{2}}}{\sum_{k'} (1 + \|\mathbf{H}_{i}(j,:) - \boldsymbol{\mu}_{k'}\|^{2}/\alpha)^{-\frac{\alpha+1}{2}}}, \quad (5)$$

$$\mathbf{use} \ \alpha = 1$$

 $\min_{\mathbf{U},\mathbf{H}_{i}'s} \sum_{i} \mathrm{KL}\left(\mathbf{W}_{i},\widetilde{\mathbf{W}}_{i}\right)$

$$s.t. \ \widetilde{\mathbf{W}}_{i}(j,k) = \frac{\mathbf{W}_{i}^{2}(j,k)/\sum_{l} \mathbf{W}_{i}(l,k)}{\sum_{k'} \left[\mathbf{W}_{i}^{2}(j,k')/\sum_{l} \mathbf{W}_{i}(l,k')\right]}.$$
(6)

Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3) Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.

$$q_{ij} = \frac{(1 + ||z_i - \mu_j||_2^2/\alpha)^{-\frac{\alpha+1}{2}}}{\sum_{j'} (1 + ||z_i - \mu_j||_2^2/\alpha)^{-\frac{\alpha+1}{2}}}$$
(2)

reedom of the Student's t-distribution, which is set to 1 as suggested

rget distribution p_i is derived by manipulating the obtained soft ngthen high confidence predictions. It can be formalized as follows:

$$p_{ij} = \frac{q_{ij}^2 / \sum_i q_{ij}}{\sum_{j'} (q_{ij'}^2 / \sum_i q_{ij'})}$$
(3)

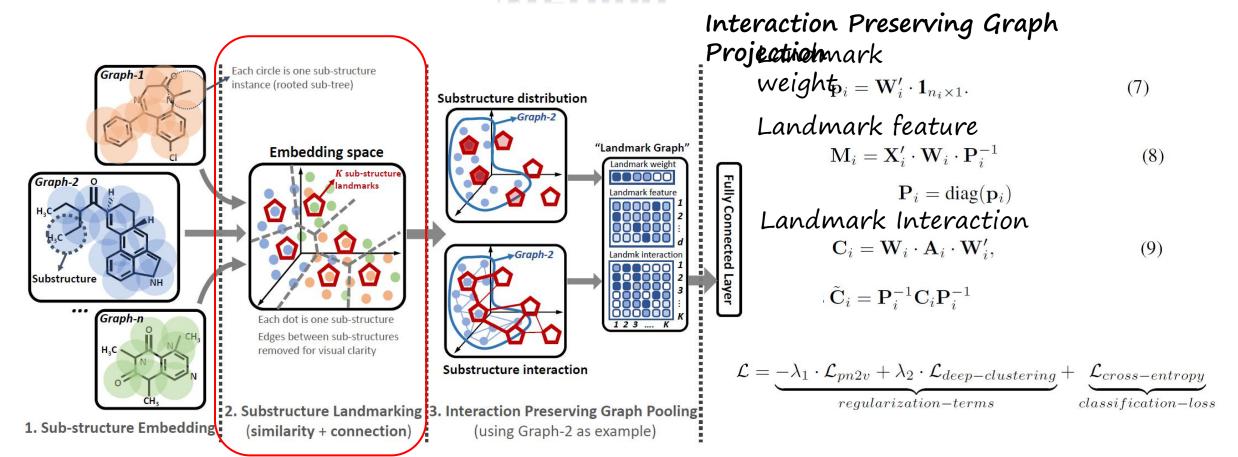


Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3) Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.

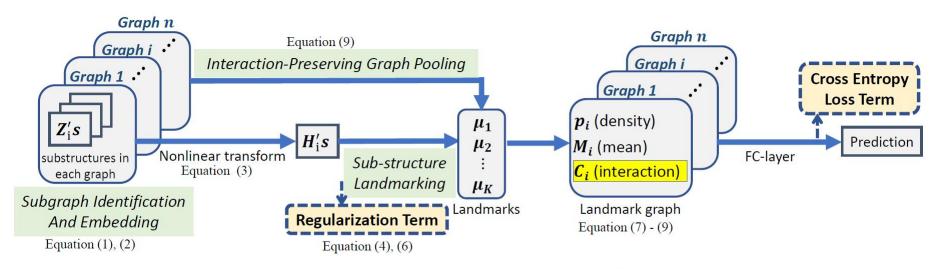


Figure 2: End-to-end training architecture of the SLIM network.

$$\mathcal{L}_{pn2v} \quad \max \sum_{i=1}^{n} \sum_{j=1}^{n_i} \sum_{l \in \mathcal{N}_j^i} \log \left(\frac{\exp \langle \mathbf{H}_i(j,:), \mathbf{H}_i(l,:) \rangle}{\sum_{l'} \exp \langle \mathbf{H}_i(j,:), \mathbf{H}_i(l',:) \rangle} \right). \quad (4)$$

$$\mathcal{L} = \underbrace{-\lambda_1 \cdot \mathcal{L}_{pn2v} + \lambda_2 \cdot \mathcal{L}_{deep-clustering}}_{regularization-terms} + \underbrace{\mathcal{L}_{cross-entropy}}_{classification-loss}$$

$$\mathcal{L}_{deep_clustering} \quad \min_{\mathbf{U}, \mathbf{H}_i's} \sum_{i} \text{KL} \left(\mathbf{W}_i, \widetilde{\mathbf{W}}_i \right)$$

$$s.t. \quad \widetilde{\mathbf{W}}_i(j,k) = \frac{\mathbf{W}_i^2(j,k) / \sum_{l} \mathbf{W}_i(l,k)}{\sum_{k'} \left[\mathbf{W}_i^2(j,k') / \sum_{l} \mathbf{W}_i(l,k') \right]}. \quad (6)$$

Experiments

Table 1: Classification on benchmark data-sets (cheminformatics, bioinformatics & social networks).

ALG.	MUTAG	PTC	NCI1	Protein	D&D	IMDB-B	IMDB-M	COLLAB
GK	81.38 ± 1.74	55.65 ± 0.46	62.49 ± 0.27	71.39 ± 0.31	74.38 ± 0.69	65.87 ± 0.98	43.89 ± 0.38	72.84 ± 0.28
PK	76.00 ± 2.69	59.50 ± 2.44	82.54 ± 0.47	73.68 ± 0.68	78.25 ± 0.51		_	
WLGK	84.11 ± 1.91	57.97 ± 2.49	84.46 ± 0.45	74.68 ± 0.49	78.34 ± 0.62	73.40 ± 4.63	49.33 ± 4.75	79.02 ± 1.77
PC-SAN	92.63 ± 4.21	60.00 ± 4.82	78.59 ± 1.89	75.89 ± 2.76	77.12 ± 2.41	71.00 ± 2.29	45.23 ± 2.84	72.60 ± 2.15
DGCNN	85.83 ± 1.66	58.59 ± 2.47	74.46 ± 0.47	75.54 ± 0.94	79.37 ± 1.03	70.03 ± 0.86	47.83 ± 0.85	73.76 ± 0.49
DiffPool	90.52 ± 3.98	_	76.53 ± 2.23	75.82 ± 3.56	78.95 ± 2.40	73.58 ± 3.24	52.13 ± 2.71	79.70 ± 1.84
GNTK	90.12 ± 8.58	67.92 ± 6.98	75.20 ± 1.53	75.61 ± 4.24	79.42 ± 2.18	75.93 ± 3.61	52.82 ± 4.65	83.60 ± 1.22
SAG	73.53 ± 9.68	69.67 ± 3.12	74.18 ± 1.29	71.86 ± 0.97	76.91 ± 2.12	72.61 ± 2.23	51.80 ± 2.08	79.88 ± 1.02
GIN	90.03 ± 8.82	64.60 ± 7.00	79.84 ± 4.57	75.28 ± 2.65	77.58 ± 2.94	75.15 ± 5.08	52.33 ± 2.84	80.21 ± 1.92
StrPool	82.21 ± 3.13	71.46 ± 2.21	71.31 ± 1.14	76.89 ± 1.67	79.72 ± 1.98	73.77 ± 2.01	50.17 ± 1.28	79.14 ± 0.88
SLIM	93.28 ± 3.36	72.41 ± 6.92	80.53 ± 2.01	77.47 ± 4.34	79.61 ± 2.66	77.23 ± 2.12	53.38 ± 4.02	78.22 ± 2.02

Experiments

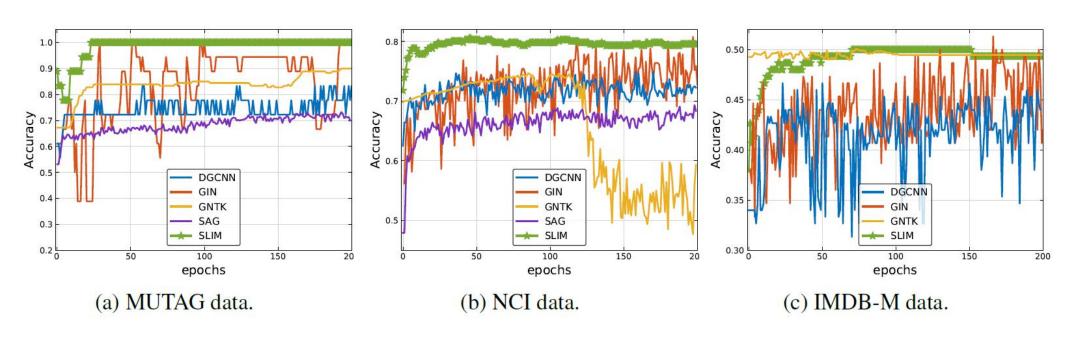
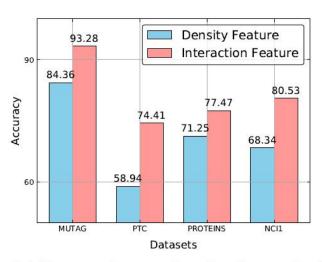
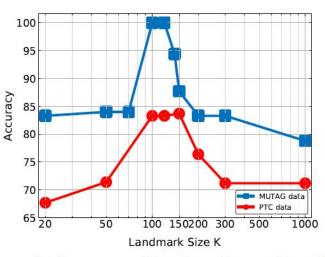
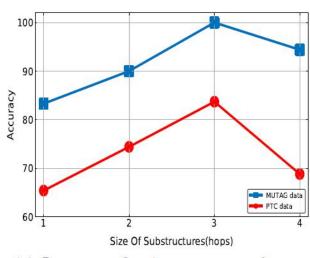


Figure 3: SLIM has a stable performance based on the accuracy-vs-epoch curve.

Experiments







- (a) Interaction vs density (counting).
- (b) Impact of landmark set size K.
- (c) Impact of sub-structure size.

Figure 4: The performance of SLIM w.r.t. the choice of hyper-parameters and graph level feature.

In Figure 4(a), we compare performance of SLIM when using the weights (or density) of the landmark \mathbf{p}_i (7), or the interaction matrix \mathbf{C}_i (9), as graph-level features. The interaction feature consistently generates better accuracy than distribution-based features, validating the importance of modeling the interacting relation in graph classification tasks.

Thank you!